3.147 \(\int (a+a \sec (c+d x))^{3/2} \tan ^5(c+d x) \, dx\)

Optimal. Leaf size=169 \[ -\frac {2 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {a}}\right )}{d}+\frac {2 (a \sec (c+d x)+a)^{11/2}}{11 a^4 d}-\frac {2 (a \sec (c+d x)+a)^{9/2}}{3 a^3 d}+\frac {2 (a \sec (c+d x)+a)^{7/2}}{7 a^2 d}+\frac {2 (a \sec (c+d x)+a)^{5/2}}{5 a d}+\frac {2 (a \sec (c+d x)+a)^{3/2}}{3 d}+\frac {2 a \sqrt {a \sec (c+d x)+a}}{d} \]

[Out]

-2*a^(3/2)*arctanh((a+a*sec(d*x+c))^(1/2)/a^(1/2))/d+2/3*(a+a*sec(d*x+c))^(3/2)/d+2/5*(a+a*sec(d*x+c))^(5/2)/a
/d+2/7*(a+a*sec(d*x+c))^(7/2)/a^2/d-2/3*(a+a*sec(d*x+c))^(9/2)/a^3/d+2/11*(a+a*sec(d*x+c))^(11/2)/a^4/d+2*a*(a
+a*sec(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 169, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3880, 88, 50, 63, 207} \[ \frac {2 (a \sec (c+d x)+a)^{11/2}}{11 a^4 d}-\frac {2 (a \sec (c+d x)+a)^{9/2}}{3 a^3 d}+\frac {2 (a \sec (c+d x)+a)^{7/2}}{7 a^2 d}-\frac {2 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {a}}\right )}{d}+\frac {2 (a \sec (c+d x)+a)^{5/2}}{5 a d}+\frac {2 (a \sec (c+d x)+a)^{3/2}}{3 d}+\frac {2 a \sqrt {a \sec (c+d x)+a}}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^(3/2)*Tan[c + d*x]^5,x]

[Out]

(-2*a^(3/2)*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/d + (2*a*Sqrt[a + a*Sec[c + d*x]])/d + (2*(a + a*Sec[c
+ d*x])^(3/2))/(3*d) + (2*(a + a*Sec[c + d*x])^(5/2))/(5*a*d) + (2*(a + a*Sec[c + d*x])^(7/2))/(7*a^2*d) - (2*
(a + a*Sec[c + d*x])^(9/2))/(3*a^3*d) + (2*(a + a*Sec[c + d*x])^(11/2))/(11*a^4*d)

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Dist[(d*b^(m - 1)
)^(-1), Subst[Int[((-a + b*x)^((m - 1)/2)*(a + b*x)^((m - 1)/2 + n))/x, x], x, Csc[c + d*x]], x] /; FreeQ[{a,
b, c, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int (a+a \sec (c+d x))^{3/2} \tan ^5(c+d x) \, dx &=\frac {\operatorname {Subst}\left (\int \frac {(-a+a x)^2 (a+a x)^{7/2}}{x} \, dx,x,\sec (c+d x)\right )}{a^4 d}\\ &=\frac {\operatorname {Subst}\left (\int \left (-3 a^2 (a+a x)^{7/2}+\frac {a^2 (a+a x)^{7/2}}{x}+a (a+a x)^{9/2}\right ) \, dx,x,\sec (c+d x)\right )}{a^4 d}\\ &=-\frac {2 (a+a \sec (c+d x))^{9/2}}{3 a^3 d}+\frac {2 (a+a \sec (c+d x))^{11/2}}{11 a^4 d}+\frac {\operatorname {Subst}\left (\int \frac {(a+a x)^{7/2}}{x} \, dx,x,\sec (c+d x)\right )}{a^2 d}\\ &=\frac {2 (a+a \sec (c+d x))^{7/2}}{7 a^2 d}-\frac {2 (a+a \sec (c+d x))^{9/2}}{3 a^3 d}+\frac {2 (a+a \sec (c+d x))^{11/2}}{11 a^4 d}+\frac {\operatorname {Subst}\left (\int \frac {(a+a x)^{5/2}}{x} \, dx,x,\sec (c+d x)\right )}{a d}\\ &=\frac {2 (a+a \sec (c+d x))^{5/2}}{5 a d}+\frac {2 (a+a \sec (c+d x))^{7/2}}{7 a^2 d}-\frac {2 (a+a \sec (c+d x))^{9/2}}{3 a^3 d}+\frac {2 (a+a \sec (c+d x))^{11/2}}{11 a^4 d}+\frac {\operatorname {Subst}\left (\int \frac {(a+a x)^{3/2}}{x} \, dx,x,\sec (c+d x)\right )}{d}\\ &=\frac {2 (a+a \sec (c+d x))^{3/2}}{3 d}+\frac {2 (a+a \sec (c+d x))^{5/2}}{5 a d}+\frac {2 (a+a \sec (c+d x))^{7/2}}{7 a^2 d}-\frac {2 (a+a \sec (c+d x))^{9/2}}{3 a^3 d}+\frac {2 (a+a \sec (c+d x))^{11/2}}{11 a^4 d}+\frac {a \operatorname {Subst}\left (\int \frac {\sqrt {a+a x}}{x} \, dx,x,\sec (c+d x)\right )}{d}\\ &=\frac {2 a \sqrt {a+a \sec (c+d x)}}{d}+\frac {2 (a+a \sec (c+d x))^{3/2}}{3 d}+\frac {2 (a+a \sec (c+d x))^{5/2}}{5 a d}+\frac {2 (a+a \sec (c+d x))^{7/2}}{7 a^2 d}-\frac {2 (a+a \sec (c+d x))^{9/2}}{3 a^3 d}+\frac {2 (a+a \sec (c+d x))^{11/2}}{11 a^4 d}+\frac {a^2 \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{d}\\ &=\frac {2 a \sqrt {a+a \sec (c+d x)}}{d}+\frac {2 (a+a \sec (c+d x))^{3/2}}{3 d}+\frac {2 (a+a \sec (c+d x))^{5/2}}{5 a d}+\frac {2 (a+a \sec (c+d x))^{7/2}}{7 a^2 d}-\frac {2 (a+a \sec (c+d x))^{9/2}}{3 a^3 d}+\frac {2 (a+a \sec (c+d x))^{11/2}}{11 a^4 d}+\frac {(2 a) \operatorname {Subst}\left (\int \frac {1}{-1+\frac {x^2}{a}} \, dx,x,\sqrt {a+a \sec (c+d x)}\right )}{d}\\ &=-\frac {2 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {a}}\right )}{d}+\frac {2 a \sqrt {a+a \sec (c+d x)}}{d}+\frac {2 (a+a \sec (c+d x))^{3/2}}{3 d}+\frac {2 (a+a \sec (c+d x))^{5/2}}{5 a d}+\frac {2 (a+a \sec (c+d x))^{7/2}}{7 a^2 d}-\frac {2 (a+a \sec (c+d x))^{9/2}}{3 a^3 d}+\frac {2 (a+a \sec (c+d x))^{11/2}}{11 a^4 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.55, size = 112, normalized size = 0.66 \[ \frac {2 (a (\sec (c+d x)+1))^{3/2} \left (\sqrt {\sec (c+d x)+1} \left (105 \sec ^5(c+d x)+140 \sec ^4(c+d x)-325 \sec ^3(c+d x)-534 \sec ^2(c+d x)+327 \sec (c+d x)+1656\right )-1155 \tanh ^{-1}\left (\sqrt {\sec (c+d x)+1}\right )\right )}{1155 d (\sec (c+d x)+1)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])^(3/2)*Tan[c + d*x]^5,x]

[Out]

(2*(a*(1 + Sec[c + d*x]))^(3/2)*(-1155*ArcTanh[Sqrt[1 + Sec[c + d*x]]] + Sqrt[1 + Sec[c + d*x]]*(1656 + 327*Se
c[c + d*x] - 534*Sec[c + d*x]^2 - 325*Sec[c + d*x]^3 + 140*Sec[c + d*x]^4 + 105*Sec[c + d*x]^5)))/(1155*d*(1 +
 Sec[c + d*x])^(3/2))

________________________________________________________________________________________

fricas [A]  time = 1.69, size = 334, normalized size = 1.98 \[ \left [\frac {1155 \, a^{\frac {3}{2}} \cos \left (d x + c\right )^{5} \log \left (-8 \, a \cos \left (d x + c\right )^{2} + 4 \, {\left (2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} - 8 \, a \cos \left (d x + c\right ) - a\right ) + 4 \, {\left (1656 \, a \cos \left (d x + c\right )^{5} + 327 \, a \cos \left (d x + c\right )^{4} - 534 \, a \cos \left (d x + c\right )^{3} - 325 \, a \cos \left (d x + c\right )^{2} + 140 \, a \cos \left (d x + c\right ) + 105 \, a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{2310 \, d \cos \left (d x + c\right )^{5}}, \frac {1155 \, \sqrt {-a} a \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{2 \, a \cos \left (d x + c\right ) + a}\right ) \cos \left (d x + c\right )^{5} + 2 \, {\left (1656 \, a \cos \left (d x + c\right )^{5} + 327 \, a \cos \left (d x + c\right )^{4} - 534 \, a \cos \left (d x + c\right )^{3} - 325 \, a \cos \left (d x + c\right )^{2} + 140 \, a \cos \left (d x + c\right ) + 105 \, a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{1155 \, d \cos \left (d x + c\right )^{5}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*tan(d*x+c)^5,x, algorithm="fricas")

[Out]

[1/2310*(1155*a^(3/2)*cos(d*x + c)^5*log(-8*a*cos(d*x + c)^2 + 4*(2*cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*sqr
t((a*cos(d*x + c) + a)/cos(d*x + c)) - 8*a*cos(d*x + c) - a) + 4*(1656*a*cos(d*x + c)^5 + 327*a*cos(d*x + c)^4
 - 534*a*cos(d*x + c)^3 - 325*a*cos(d*x + c)^2 + 140*a*cos(d*x + c) + 105*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x
 + c)))/(d*cos(d*x + c)^5), 1/1155*(1155*sqrt(-a)*a*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*
cos(d*x + c)/(2*a*cos(d*x + c) + a))*cos(d*x + c)^5 + 2*(1656*a*cos(d*x + c)^5 + 327*a*cos(d*x + c)^4 - 534*a*
cos(d*x + c)^3 - 325*a*cos(d*x + c)^2 + 140*a*cos(d*x + c) + 105*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)))/(
d*cos(d*x + c)^5)]

________________________________________________________________________________________

giac [A]  time = 4.76, size = 218, normalized size = 1.29 \[ \frac {\sqrt {2} {\left (\frac {1155 \, \sqrt {2} a \arctan \left (\frac {\sqrt {2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a}} + \frac {2 \, {\left (1155 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{5} a - 770 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{4} a^{2} + 924 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{3} a^{3} - 1320 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{2} a^{4} - 6160 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )} a^{5} - 3360 \, a^{6}\right )}}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{5} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}\right )} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{1155 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*tan(d*x+c)^5,x, algorithm="giac")

[Out]

1/1155*sqrt(2)*(1155*sqrt(2)*a*arctan(1/2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/sqrt(-a) + 2*(
1155*(a*tan(1/2*d*x + 1/2*c)^2 - a)^5*a - 770*(a*tan(1/2*d*x + 1/2*c)^2 - a)^4*a^2 + 924*(a*tan(1/2*d*x + 1/2*
c)^2 - a)^3*a^3 - 1320*(a*tan(1/2*d*x + 1/2*c)^2 - a)^2*a^4 - 6160*(a*tan(1/2*d*x + 1/2*c)^2 - a)*a^5 - 3360*a
^6)/((a*tan(1/2*d*x + 1/2*c)^2 - a)^5*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))*a*sgn(cos(d*x + c))/d

________________________________________________________________________________________

maple [B]  time = 1.21, size = 429, normalized size = 2.54 \[ -\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (1155 \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {11}{2}} \left (\cos ^{5}\left (d x +c \right )\right )+5775 \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {11}{2}} \left (\cos ^{4}\left (d x +c \right )\right )+11550 \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {11}{2}} \left (\cos ^{3}\left (d x +c \right )\right )+11550 \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {11}{2}} \left (\cos ^{2}\left (d x +c \right )\right )+5775 \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {11}{2}} \cos \left (d x +c \right )+1155 \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {11}{2}}-105984 \left (\cos ^{5}\left (d x +c \right )\right )-20928 \left (\cos ^{4}\left (d x +c \right )\right )+34176 \left (\cos ^{3}\left (d x +c \right )\right )+20800 \left (\cos ^{2}\left (d x +c \right )\right )-8960 \cos \left (d x +c \right )-6720\right ) a}{36960 d \cos \left (d x +c \right )^{5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(3/2)*tan(d*x+c)^5,x)

[Out]

-1/36960/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(1155*2^(1/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2
^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(11/2)*cos(d*x+c)^5+5775*2^(1/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c
)))^(1/2)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(11/2)*cos(d*x+c)^4+11550*2^(1/2)*arctan(1/2*(-2*cos(d*x+c)/
(1+cos(d*x+c)))^(1/2)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(11/2)*cos(d*x+c)^3+11550*2^(1/2)*arctan(1/2*(-2
*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(11/2)*cos(d*x+c)^2+5775*2^(1/2)*arc
tan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(11/2)*cos(d*x+c)+1155*2^
(1/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(11/2)-105984*co
s(d*x+c)^5-20928*cos(d*x+c)^4+34176*cos(d*x+c)^3+20800*cos(d*x+c)^2-8960*cos(d*x+c)-6720)/cos(d*x+c)^5*a

________________________________________________________________________________________

maxima [A]  time = 0.46, size = 162, normalized size = 0.96 \[ \frac {1155 \, a^{\frac {3}{2}} \log \left (\frac {\sqrt {a + \frac {a}{\cos \left (d x + c\right )}} - \sqrt {a}}{\sqrt {a + \frac {a}{\cos \left (d x + c\right )}} + \sqrt {a}}\right ) + 770 \, {\left (a + \frac {a}{\cos \left (d x + c\right )}\right )}^{\frac {3}{2}} + \frac {210 \, {\left (a + \frac {a}{\cos \left (d x + c\right )}\right )}^{\frac {11}{2}}}{a^{4}} - \frac {770 \, {\left (a + \frac {a}{\cos \left (d x + c\right )}\right )}^{\frac {9}{2}}}{a^{3}} + \frac {330 \, {\left (a + \frac {a}{\cos \left (d x + c\right )}\right )}^{\frac {7}{2}}}{a^{2}} + \frac {462 \, {\left (a + \frac {a}{\cos \left (d x + c\right )}\right )}^{\frac {5}{2}}}{a} + 2310 \, \sqrt {a + \frac {a}{\cos \left (d x + c\right )}} a}{1155 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*tan(d*x+c)^5,x, algorithm="maxima")

[Out]

1/1155*(1155*a^(3/2)*log((sqrt(a + a/cos(d*x + c)) - sqrt(a))/(sqrt(a + a/cos(d*x + c)) + sqrt(a))) + 770*(a +
 a/cos(d*x + c))^(3/2) + 210*(a + a/cos(d*x + c))^(11/2)/a^4 - 770*(a + a/cos(d*x + c))^(9/2)/a^3 + 330*(a + a
/cos(d*x + c))^(7/2)/a^2 + 462*(a + a/cos(d*x + c))^(5/2)/a + 2310*sqrt(a + a/cos(d*x + c))*a)/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\mathrm {tan}\left (c+d\,x\right )}^5\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^5*(a + a/cos(c + d*x))^(3/2),x)

[Out]

int(tan(c + d*x)^5*(a + a/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \tan ^{5}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(3/2)*tan(d*x+c)**5,x)

[Out]

Integral((a*(sec(c + d*x) + 1))**(3/2)*tan(c + d*x)**5, x)

________________________________________________________________________________________